Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Self-Supervised Learning (SSL) has become a prominent approach for acquiring visual representations across various tasks, yet its application in fine-grained visual recognition (FGVR) is challenged by the intricate task of distinguishing subtle differences between categories. To overcome this, we introduce an novel strategy that boosts SSL's ability to extract critical discriminative features vital for FGVR. This approach creates synthesized data pairs to guide the model to focus on discriminative features critical for FGVR during SSL. We start by identifying non-discriminative features using two main criteria: features with low variance that fail to effectively separate data and those deemed less important by Grad-CAM induced from the SSL loss. We then introduce perturbations to these non-discriminative features while preserving discriminative ones. A decoder is employed to reconstruct images from both perturbed and original feature vectors to create data pairs. An encoder is trained on such generated data pairs to become invariant to variations in non-discriminative dimensions while focusing on discriminative features, thereby improving the model's performance in FGVR tasks. We demonstrate the promising FGVR performance of the proposed approach through extensive evaluation on a wide variety of datasets.more » « lessFree, publicly-accessible full text available November 24, 2025
-
Contrastive learning demonstrates great promise for representation learning. Data augmentations play a critical role in contrastive learning by providing informative views of the data without necessitating explicit labels. Nonetheless, the efficacy of current methodologies heavily hinges on the quality of employed data augmentation (DA) functions, often chosen manually from a limited set of options. While exploiting diverse data augmentations is appealing, the complexities inherent in both DAs and representation learning can lead to performance deterioration. Addressing this challenge and facilitating the systematic incorporation of diverse data augmentations, this paper proposes Contrastive Learning with Consistent Representations (CoCor). At the heart of CoCor is a novel consistency metric termed DA consistency. This metric governs the mapping of augmented input data to the representation space. Moreover, we propose to learn the optimal mapping locations as a function of DA. Experimental results demonstrate that CoCor notably enhances the generalizability and transferability of learned representations in comparison to baseline methods. The implementation of CoCor can be found at \url{https://github.com/zihuwang97/CoCor}.more » « less
An official website of the United States government

Full Text Available